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Abstract The rate of ML ≥3 earthquakes in the central and eastern United States
increased beginning in 2009, particularly in Oklahoma and central Arkansas, where
fluid injection has occurred. We find evidence that suggests these rate increases are
man-made by examining the rate changes in a catalog of ML ≥3 earthquakes in
Oklahoma, which had a low background seismicity rate before 2009, as well as rate
changes in a catalog ofML ≥2:2 earthquakes in central Arkansas, which had a history
of earthquake swarms prior to the start of injection in 2009. In both cases, stochastic
epidemic-type aftershock sequence models and statistical tests demonstrate that the
earthquake rate change is statistically significant, and both the background rate of
independent earthquakes and the aftershock productivity must increase in 2009 to
explain the observed increase in seismicity. This suggests that a significant change
in the underlying triggering process occurred. Both parameters vary, even when com-
paring natural to potentially induced swarms in Arkansas, which suggests that changes
in both the background rate and the aftershock productivity may provide a way to
distinguish man-made from natural earthquake rate changes. In Arkansas we also
compare earthquake and injection well locations, finding that earthquakes within
6 km of an active injection well tend to occur closer together than those that occur
before, after, or far from active injection. Thus, like a change in productivity, a change
in interevent distance distribution may also be an indicator of induced seismicity.

Introduction

The rate ofML ≥3 earthquakes in the central and eastern
United States increased substantially beginning in 2009, par-
ticularly in regions such as Oklahoma, the New Mexico–
Colorado border, and central Arkansas where fluid injection
associated with oil and gas production occurs (Ellsworth
et al., 2012; Horton, 2012b). Are these earthquake rate
changes in fact man-made, are they due to natural transient
processes, or are they simply random fluctuations in rate? To
investigate this question, we use statistical models and tests
to determine whether these rate increases are statistically
significant. We will rely on the epidemic-type aftershock se-
quence (ETAS) model (Ogata, 1988), a stochastic model
based on empirical aftershock scaling laws such as the Omori
law and the Gutenberg–Richter magnitude distribution, to
establish whether the rate changes are due to increases in
background seismicity rate, aftershock productivity, or some
combination of these effects. The results may provide a way
to distinguish between natural and anthropogenic earthquake
rate changes.

This study focuses on Oklahoma and central Arkansas.
From 1975 to 2008, a total of 40 ML ≥3 earthquakes oc-
curred in Oklahoma, resulting in a low but relatively steady
background seismicity rate of roughly one to two events per

year. The seismicity rate began to increase in 2009 and
continues to the present, but much of this increase is concen-
trated in the central part of the state (Fig. 1). During this
period of heightened seismicity rate, an ML 5.6 occurred in
November 2011 east of Oklahoma City, the largest event in
the state to occur in the last century. There has been some
evidence to suggest that this earthquake was induced by
wastewater injection activity at nearby fluid injection wells
(Horton, 2012a; Keranen et al., 2013).

We also examine seismicity rate changes in central Ar-
kansas where, unlike Oklahoma, earthquake swarms have
occurred prior to the start of fluid injection in 2009 (Fig. 2).
Earthquake swarm activity began in January 1982 near the
town of Enola (Johnston, 1982). Over the next three years,
over 30,000 ML <4:5 earthquakes were recorded, poten-
tially triggered by magma intrusion or natural fluid migration
(Johnston, 1982; Chiu et al., 1984). By 1987, seismicity had
died down, with only 12 earthquakes being recorded in the
area over a four-month period (Pujol et al., 1989), and the
low level of activity continued through the 1990s. In May
2001, another earthquake swarm began near Enola, consist-
ing of 2500 ML <4:4 earthquakes over two months, which
also may have been triggered by natural fluid migration
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(Rabak et al., 2010). Following another period of relatively
little seismicity, the earthquake rate once again increased sig-
nificantly in 2010–2011, when another series of swarms oc-
curred near the towns of Guy and Greenbrier. These swarms
were likely induced by wastewater injection, which began in
the area in April 2009 and was halted in 2011 because of the
swarms (Horton, 2012b).

In this paper, we fit the ETAS model to earthquake cata-
logs from Oklahoma and Arkansas to investigate the signifi-
cance and possible causes of the rate increases that are
observed there beginning in 2009. To determine whether
an earthquake rate increase is due to a change in background
seismicity rate, aftershock productivity, or some combination
of the two, we do the following: (1) fit the ETAS model pa-
rameters to the data, (2) convert origin times to transformed
times (Ogata, 1992), and (3) use Runs (Wald and Wolfowitz,
1940), autocorrelation function (ACF), and Kolmogorov–
Smirnov (KS) tests on interevent times to test the null hypoth-
esis that the transformed times are drawn from a Poisson
distribution with constant rate (as expected when no external
processes trigger earthquakes besides a constant tectonic
loading rate). We also test models that allow different sets of
parameters to vary around a change point in 2009. Addition-
ally, in Arkansas we combine earthquake and injection well
data to explore spatiotemporal relationships between seis-
micity and fluid injection activity. These tests may provide

a way to distinguish man-made from natural earthquake rate
changes and provide insights into the physical mechanisms
of induced seismicity.

Data and Methods

To investigate the observed rate change in Oklahoma,
we analyze earthquake occurrence times and magnitudes
from the U.S. Geological Survey (USGS) Preliminary Deter-
mination of Epicenters (PDE) catalog ofML ≥3 events occur-
ring from January 1975 to November 2011 (Fig. 1; see Data
and Resources). Using the maximum curvature (MAXC) algo-
rithm (Wiemer et al., 1998; Wiemer and Wyss, 2000), we
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Figure 1. (a) Oklahoma ML ≥3 seismicity from the USGS PDE
catalog. Events from 1975 to 2008 are shown by circles, events from
2009 to 2011 are shown by squares. Marker size indicates magni-
tude. (b) Magnitudes and occurrence times of seismicity data. The
color version of this figure is available only in the electronic edition.
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Figure 2. (a) Central Arkansas ML ≥2:2 seismicity from the
Advanced National Seismic System (ANSS) catalog. Events from
1982 to 2008 (which occur prior to the start of wastewater injection)
are shown by circles, events from 2009 to 2012 are shown by
squares. Marker size indicates magnitude. (b) Magnitudes and oc-
currence times of seismicity data, with significant swarms labeled.
The color version of this figure is available only in the electronic
edition.
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estimate the magnitude of completeness to be 2:7� 0:34 but
choose a conservative threshold ofMc � 3. When the analysis
is repeated with a slightly higher completeness threshold, the
results are similar, suggesting that this does not bias the re-
sults. We will compare the results from Oklahoma to those
obtained from an Advanced National Seismic System (ANSS)
catalog ofML ≥2:2 ≥ events that occurred in central Arkansas
from January 1982 to January 2012 (Fig. 2; see Data and Re-
sources). The ANSS catalog in Arkansas has a lower magni-
tude of completeness, estimated with the MAXC algorithm to
be 2:1� 0:06, which allows us to include more events in our
statistical analysis.

The ETAS model is a point process model that describes
the seismicity rate observed in a region as a summation of a
background rate of independent events and the aftershocks
triggered by each event (Ogata, 1988). Each earthquake
can trigger its own aftershock sequence; therefore, given the
occurrence time ti and magnitude Mi of each event i that oc-
curred prior to time t, and the magnitude of completenessMc

of the catalog, the earthquake occurrence rate λ at time t is

λ�t� � μ�
X

fi∶ti<tg

Keα�Mi−Mc�

�t − ti � c�p ; �1�

in which μ is the background seismicity rate, K is the after-
shock productivity, α determines how efficiently an earth-
quake of a given magnitude triggers aftershocks, and c
and p are the Omori–Utsu parameters that describe the tem-
poral decay of seismicity rate following a mainshock. The
parameter c is a time offset between the mainshock and when
the power law decay in rate is observed, and the parameter p
governs how quickly the rate decays (Omori, 1894; Utsu,
1961). The parameters μ, K, α, c, and p are optimized to
fit a catalog of events occurring from Ts, the start of the time
span of interest, to Te, the end of the time span of interest, by
maximizing the point process likelihood L using the follow-
ing function (Daley and Vere-Jones, 2002):

lnL�μ; K; c; α; p� �
X

fi∶ti<Teg
ln λ�ti� −

Z
Te

Ts

λ�t�dt: �2�

The fit of an optimized ETAS model to a catalog can be
tested by first converting the occurrence times ti to trans-
formed times τi using the following theoretical cumulative
function (Ogata, 1992):

τi �
Z

ti

0

λ�t�dt: �3�
The transformed time τi thus represents the number of events
that the optimized ETAS model predicts should have occurred
in the time interval �0; ti�. If the optimized ETAS model fits
the seismicity well, then the transformed times behave as a
Poisson process with constant unit rate. Therefore, a plot of
the observed cumulative number of events versus trans-

formed times should be linear with unit slope (i.e., i � τi,
or the ith event occurs exactly when the model predicts it
should). Positive and negative deviations from the line indi-
cate that the model is under- and overpredicting seismicity,
respectively.

Moreover, if the transformed times are drawn from a
Poisson distribution, then the transformed interevent times
Δτi � τi�1 − τi should be independent and identically
drawn from an exponential distribution. To test this hypoth-
esis, we use a suite of statistical tests, including the Runs test,
ACF test, and KS test. The Runs test can be used to check the
independence of the interevent times by comparing the dis-
tribution of runs (sets of sequential values that are either all
above or all below the median) in the sequence, which should
be approximately normal (Wald and Wolfowitz, 1940). The
ACF test also checks for the presence of temporal correlation
in the interevent times by computing the correlation of the
series of interevent times with itself at different time lags
and determining whether significant correlation exists at any
lags. We use the KS test to check the goodness-of-fit of the
interevent times to an exponential distribution, applying a
Lilliefors correction based on Monte Carlo simulation to ac-
count for the mean of the distribution being unknown a pri-
ori and therefore estimated from the data (Lilliefors, 1969).
Similar suites of tests have been used to evaluate the fit of a
stationary ETAS model to fluid-triggered changes in earth-
quake rate (Lombardi et al., 2010).

We can compare how well different models fit the same
data set by computing the Akaike information criterion (AIC)
for each model (Akaike, 1974). The AIC statistic is based on
the likelihood L and accounts for models with different num-
bers of fitted parameters k:

AIC � −2 lnL� 2k: �4�
The model with the lower AIC is considered to be the best
model, and differences of ∼2 are considered to be significant
at the 5% level (Hainzl and Ogata, 2005).

Results

We proceed by first fitting the ETAS model to the full-
length catalogs in Oklahoma and Arkansas. The maximum
likelihood estimates of the ETAS parameters fit to the 1975–
2011 Oklahoma catalog are shown in Table 1. Visually, the
ETAS model fits the catalog poorly (Fig. 3a,b). We use the
Runs, ACF, and KS tests to quantitatively evaluate the fit of
the ETAS model: if any of the three tests rejects the null hy-
pothesis (i.e., p-value <0:05), then we consider the model
a poor fit to the data. In Oklahoma, the null hypothesis
that the transformed interevent times are independent is
rejected by the Runs test (p-value � 0:0009) and the ACF
test, which indicates that the interevent times are temporally
correlated. These results suggest that a single set of ETAS
parameters cannot fit the entire 1975–2011 earthquake catalog,
providing evidence that a significant rate change occurred
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during that time period. However, the null hypothesis that the
transformed interevent times are drawn from an exponential
distribution is not rejected by the KS test (p-value � 0:98).
This suggests that, unlike the Runs and ACF tests, the KS test
may not be sensitive to a change in rate, because the overall
distribution is dominated by the majority of the events that
occur in the later part of the catalog. When the ETAS model is
fit to the 1975–2008 portion of the catalog (Table 1) and
extrapolated to predict the seismicity in 2009–2011, the
model predicts that three earthquakes should have occurred,
but in reality 100 events occurred, an increase by over a fac-
tor of 30 (Fig. 3c). Simulations using the 1975–2008 param-
eters show that there is less than 0.1% chance of observing
15 events or more from 2009 to 2011. The transformed time
plot also indicates that the 2009–2011 seismicity is vastly
underpredicted by the 1975–2008 model (Fig. 3d). However,
ETAS models fit to the 1975–2008 and 2009–2011 parts of
the catalog separately explain the seismicity in their respec-
tive time periods well (Fig. 3e,f). For the 1975–2008 data, the
null hypothesis is accepted by all three hypothesis tests with
p-values ranging from 0.63 to 0.94. Similarly for the 2009–
2011 data, the null hypothesis is accepted by all three tests
with p-values of 0.15–0.93. This suggests that the basic trig-
gering model applies throughout the catalog but the model
parameters must change.

Similarly, the ETAS model poorly fits the 1982–2012
Arkansas earthquake catalog, both visually and quantita-
tively (Table 2; Fig. 4a,b). The null hypothesis is rejected
by the Runs test (p-value � 0:015) and the ACF test and
accepted by the KS test (p-value � 0:72), again due to the
distribution of the later events in the catalog dominating
the overall distribution. When the ETAS model is fit to the
1982–2008 part of the catalog and extrapolated through
2012, the seismicity is again underpredicted (243 expected
events versus 529 observed; Fig. 4c,d). Simulations show
that, when using the 1982–2008 parameters, there is less than
0.1% chance of observing 25 or more earthquakes during
2009–2012. However, a separate ETAS model fit to the
2009–2012 catalog fits the seismicity well (i.e., the null hy-
pothesis is accepted with p-values ranging from 0.38 to 0.91;
Fig. 4e,f).

The results of the preceding tests suggest that in both
Oklahoma and Arkansas, at least one of the ETAS model
parameters needs to change in 2009 in order to account
for the increase in seismicity. To determine which parameters
need to change the most to explain the seismicity increase in
Oklahoma, we use the 1973–2008 ETAS parameters (Table 1)
as a base model and evaluate fits to the 2009–2011 catalog
for the following cases: (1) varying μ alone, (2) varying K
alone, (3) varying both μ and K, and (4) varying all five
model parameters. We compute the AIC for each case to
evaluate the impact of fitting different sets of parameters to
the 2009–2011 Oklahoma seismicity. The results are shown
in Figure 5a,b and Table 1. The model in which both the
background seismicity rate μ and aftershock productivity
K vary is the best model, because the AIC is significantly
decreased by estimating both parameters (491.844) rather
than either parameter by itself (672.08 and 517.84 for the
cases in which μ and K are each estimated, respectively).
Adding the other three triggering parameters does not offer
a significant improvement. This shows that changes in both
the background seismicity rate and triggering properties of
central Oklahoma are needed in order to fit the 2009–
2011 seismicity data. While the background seismicity rate
increases by over an order of magnitude, the aftershock pro-
ductivity increases by several orders of magnitude. In fact,
the aftershock productivity is so low when ETAS is fit to the
1973–2008 data that all of the seismicity prior to 2009 occurs
as independent background events rather than as triggered
aftershocks. In contrast, using the model where both μ and
K vary to fit the 2009–2011 data, 47.5% of the earthquakes
that occur from 2009 to 2011 have a greater than 50% chance
of having been triggered by a previous event.

In Arkansas, we use the 1982–2008 ETAS parameters as
a base model and again compute the AIC for different cases
(Table 2). As in Oklahoma, varying the background rate and
aftershock productivity is required in order to best fit the
2009–2012 data (Fig. 5c,d), which again indicates that the
triggering properties in central Arkansas changed, causing
much more triggered seismicity to occur after 2009. How-
ever, the best-fitting model also requires changes in the
three other triggering parameters (c, α, and p). We therefore

Table 1
Oklahoma ETAS Maximum Likelihood Estimation (MLE) Results

Data Set μ (Events/Day) K (Events/Day) c (Days) α P AIC

1973–2011 0.001±0.009 0.026±0.021 0.007±0.06 1.46±0.1 0.79±0.02 1097.96
1973–2008 0.003±0.004 3 × 10−17 � 0:03 0.001±0.86 2.21±0.47 0.72±0.09 553.61
μ estimated* 0.002±0.005 0.018 0.02 1.88 0.96 571.99

2009–2011 0.046±0.03 0.018±0.03 0.02±0.13 1.88±0.1 0.96±0.09 492.44
μ estimated† 0.095±0.02 3 × 10−17 0.001 2.21 0.72 672.08
K estimated† 0.003 0.015±0.006 0.001 2.21 0.72 517.84
μ and K estimated† 0.04±0.02 0.009±0.008 0.001 2.21 0.72 491.84

Uncertainties are 1 standard deviation.
*All other parameters held constant at 2009–2011 estimates to evaluate impact of parameter changes.
†All other parameters held constant at 1973–2008 estimates to evaluate impact of parameter changes.
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Figure 3. Oklahoma ETAS modeling results. (a) Cumulative number of events versus time observed (solid line) and predicted by ETAS fit
from 1975 to 2011 (dashed line). ETAS fits poorly visually and quantitatively. (b) Transformed time plot. The dashed line indicates a perfect
model, and the solid line is the ETAS model fit to the data. Less seismicity occurs than the model predicts. (c) Cumulative number of events
versus time observed (solid line) and predicted by ETAS fit from 1975 to 2008 and extrapolated through 2011 (dashed). The vertical dashed
line indicates the start of extrapolation in 2009. The model underpredicts 2009–2011 seismicity by a factor of 33. (d) Transformed time plot
for ETAS fit from 1975 to 2008 and extrapolated through 2011. The vertical dashed line indicates the start of extrapolation; gray lines indicate
2σ bounds. More seismicity occurs than the model predicts. (e) Cumulative number of events versus time observed (solid line) and predicted
by ETAS (dashed line) fit to the 1973–2008 catalog. ETAS provides a good fit (all three tests accept the null hypothesis). (f) Cumulative
number of events versus time observed (solid line) and predicted by ETAS (dashed line) fit to the 2009–2011 catalog. ETAS provides a good fit
(all three tests accept the null hypothesis). The color version of this figure is available only in the electronic edition.
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computed the AIC also for cases where three and four param-
eters were allowed to vary and found that changes in c and p
improved the fit the most (Table 2). However, we will focus
on changes in μ and K, because changes in these two param-
eters are required to best fit the data in both Oklahoma and
Arkansas, although the relative importance of the parameters
differs in the two regions. In Arkansas, changing K is more
necessary to fit the data than changing μ, unlike in Oklahoma
where changes in both μ and K are important (Fig. 5). This
may be because the rate is relatively high in Arkansas be-
cause of the earlier Enola swarms, while in Oklahoma there
was little seismicity and thus a low μ prior to 2009.

The two standard deviation confidence intervals of the
K parameters, between the two time periods, overlap for both
Oklahoma and Arkansas (Tables 1 and 2). This is partially
due to trade-offs between parameters of the ETAS model
within a single data set. Our conclusion that both μ and
K changed between the two time periods is based on the re-
duction in AIC values and is supported by the simulations of
the number of events in the later time period when using the
parameters from the earlier time period.

We can check the robustness of these results by fitting
the ETAS model to the latter part of the catalogs, then apply-
ing these fitted triggering parameters (K, c, α, and p) to the
earlier parts of the catalog and estimating the background
seismicity rate μ. Because of the larger amount of data avail-
able post-2009, the model parameters during this time period
are better constrained. If applying the post-2009 triggering
parameters and allowing μ to vary results in a good fit to the
pre-2009 data, this would imply that the triggering parame-
ters are simply poorly constrained by the data available prior
to 2009. For both Oklahoma and Arkansas, applying the
post-2009 triggering parameters to the pre-2009 catalogs re-
sults in estimates of μ that are higher than the pre-2009 es-
timates but still provide worse fits to the data (Tables 1 and
2). The higher aftershock productivity post-2009 causes the
pre-2009 seismic activity to be overestimated. This gives us

some confidence that the change in triggering parameters is
real and not an artifact of changes in data quantity. We also
simulated the number of earthquakes during the earlier time
period using the parameters from post-2009 and there is
<0:1% chance of those parameters producing so few events
during the earlier time period.

It is possible that the apparent change in aftershock pro-
ductivity in 2009 is due to biased parameter estimates caused
by incorrectly assuming a constant μ after 2009 when in fact
it might be time varying due to injection. Hainzl et al. (2013)
showed that this assumption can lead to an overestimation
of K and an underestimation of α. While it is true that this
assumption may cause our parameter estimates to be some-
what biased, Figure 5 demonstrates that these parameters still
need to change significantly in order to explain the observed
rate change. The rate change cannot be explained simply by
varying μ in time alone. Moreover, available monthly injec-
tion data for the wells nearest the Prague, Oklahoma, sequence
do not show a significant change in the time variation of in-
jection rate when comparing before and after 2009 (Keranen
et al., 2013). Therefore, there does not seem to be much evi-
dence to support a suddenly time-varying μ following 2009, at
least on the monthly scale.

It is also possible that the apparent change in aftershock
productivity is caused by a change in the spatial distribution
of events. If events are occurring spatially closer together,
they could play more of a role in triggering one another.
Therefore, changes in spatial distribution might also be di-
agnostic of induced earthquake rate changes. We can test this
by comparing the interevent distance distributions of earth-
quakes that occur before, during, and after active injection in
Arkansas. In the study area, wastewater fluid injection began
in April 2009 but stopped following the 2011 swarms (Hor-
ton, 2012b). Figure 6a compares the locations of earthquakes
and Underground Injection Control (UIC) class II wells
obtained from the Arkansas Oil and Gas Commission (see
Data and Resources). We calculate the distance between each

Table 2
Arkansas ETAS Maximum Likelihood Estimation (MLE) Results

Data Set μ (Events/Day) K (Events/Day) c (Days) α p AIC

1982–2008 0.001±0.01 0.028±0.028 0.004±0.003 0.92±0.14 0.96±0.02 680.33
μ estimated* 0.001±0.007 0.082 0.046 1.09 1.27 749.66

2009–2012 0.016±0.025 0.082±0.007 0.046±0.019 1.09±0.03 1.27±0.02 37.17
μ estimated† 0.032±0.026 0.028 0.004 0.92 0.96 342.46
K estimated† 0.001 0.062±0.005 0.004 0.92 0.96 141.57
μ and K estimated† 0.007±0.026 0.061±0.006 0.004 0.92 0.96 117.95
μ, K, α estimated† 0.007±0.026 0.052±0.012 0.004 1.24±0.06 0.96 115.66
μ, K, c estimated† 0.007±0.024 0.062±0.007 0.004±0.007 0.92 0.96 119.65
μ, K, p estimated † 0.011±0.015 0.061±0.006 0.004 0.92 1.05±0.04 89.24
μ, K, α, p estimated † 0.011±0.026 0.055±0.010 0.004 1.12±0.07 1.04±0.01 89.49
μ, K, c, p estimated † 0.016±0.025 0.089±0.012 0.046±0.032 0.92 1.27±0.02 36.50
μ, K, c, α estimated † 0.007±0.026 0.052±0.011 0.005±0.009 1.25±0.06 0.96 117.16

Uncertainties are 1 standard deviation.
*All other parameters held constant at 2009–2012 estimates to evaluate impact of parameter changes.
†All other parameters held constant at 1982–2008 estimates to evaluate impact of parameter changes.
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Figure 4. Arkansas ETAS modeling results. (a) Cumulative number of events versus time observed (solid line) and predicted by ETAS fit
from 1982 to 2012 (dashed line). ETAS poorly fits, both visually and quantitatively. (b) Transformed time plot. The dashed line indicates a
perfect model; the solid line is the ETAS model fit to the data. The model first overpredicts then underpredicts the data. (c) Cumulative number
of events versus time observed (solid line) and predicted by ETAS fit from 1982 to 2008 and extrapolated through 2012 (dashed line). The
model underpredicts the 2009–2012 seismicity. (d) Transformed time plot for ETAS fit from 1982 to 2008 and extrapolated through 2012. The
vertical dashed line indicates the start of extrapolation; gray lines indicate 2σ bounds. More seismicity occurs than the model predicts.
(e) Cumulative number of events versus time observed (solid) and predicted by ETAS (dashed) fit to the 1982–2008 catalog. ETAS provides
a good fit (all three tests accept the null hypothesis). (f) Cumulative number of events versus time observed (solid line) and predicted by ETAS
(dashed line) fit to the 2009–2012 catalog. ETAS provides a good fit (all three tests accept the null hypothesis). The color version of this figure
is available only in the electronic edition.
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earthquake and the nearest well and compare the distribution
of these distances for earthquakes that occur before injection
(1982–2008), during injection (2009–2011), and after injec-
tion stopped (2011–2012). A significant change in this dis-
tribution occurs at an earthquake–well distance of 6 km for
the earthquakes that happened during the years of active in-
jection, which is not seen for the earthquakes that occurred in
the time before or after (Fig. 6b). Roughly 85% of the earth-
quakes during 2009–2011 occurred within 6 km of an active
injection well. Following shut-in of the last of the wells in late
2011, the seismicity rate has decreased, and the spatial distri-
bution is similar to the earthquakes that occurred prior to 2009.

We can then compare the distribution of interevent dis-
tances (i.e., distance between consecutive earthquakes) for
the earthquakes that occurred during 2009–2011 near an ac-
tive well to those that occurred before, after, and far from
active injection (Fig. 6c). Two-sample KS tests show that
the interevent distance distribution of the earthquakes that
occur within 6 km of an active well is significantly different
than the other distributions. Around 85% of these earth-

quakes happen within 5 km of the previous earthquake, in-
dicating that earthquakes that occur near active wells tend to
occur closer to one another in space. The seismicity that hap-
pens after injection stops has a similar interevent distance
distribution as the seismicity from before injection began.
Thus, like a change in aftershock productivity, a significant
change in interevent distance distribution may also be an in-
dicator of induced seismicity.

Discussion

We have found that in both Oklahoma and Arkansas, a
change in the background seismicity rate and triggering
parameters used in the ETAS model must occur in order
to account for the large increase in seismicity following
2009. Natural earthquake swarms have typically been mod-
eled as time-dependent background seismicity rates in the
ETAS model, caused, for example, by changes in pore fluid
pressure due to fluid migration (e.g., Hainzl and Ogata, 2005;
Lombardi et al., 2010; Daniel et al., 2011) or changes in
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Figure 5. Comparison of how well changing different parameters from their pre-2009 values can explain post-2009 seismicity. (a) Cu-
mulative number of events observed (solid black line) and predicted for models with varying different parameters (see legend for line styles)
in Oklahoma. While the five-parameter model most closely matches the observations, its AIC shows it does not offer significant improvement
over the μ� K model (Table 1). (b) Transformed time plots for the different models in Oklahoma. The solid black line indicates a perfect
fitting model. (c) Cumulative number of events observed (solid black line) and predicted for models varying different parameters (see legend
for line styles) in Arkansas. The five-parameter model most closely matches the data and offers significant improvement over the μ� K
model. (d) Transformed time plots for the different models in Arkansas. The color version of this figure is available only in the electronic
edition.
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stress rate due to aseismic creep events (e.g., Llenos et al.,
2009; Llenos and McGuire, 2011; Okutani and Ide, 2011).
To our knowledge, variations in aftershock productivity have
not yet been associated with naturally occurring earthquake
swarms, so changes in productivity may be a way to distin-
guish between natural andman-made earthquake rate changes.

The seismicity of Arkansas offers a way to explore how
swarms triggered by natural processes may differ from
swarms that have occurred following fluid injection. We can
directly compare the 1980s Enola swarms that were likely
triggered by natural fluid migration (Johnston, 1982; Chiu
et al., 1984; Rabak et al., 2010) to the 2010–2011 Guy–

Greenbrier swarms that were likely induced (Horton, 2012b).
We find that the two sets of swarms cannot be explained
by the same set of ETAS parameters (Table 3). Relative to
the Enola swarms, the Guy–Greenbrier swarms show both
higher background seismicity rate and aftershock productiv-
ity. The interevent distance distribution is also significantly
different for the two swarms, which can essentially be seen in
Figure 6d, because the Enola swarms comprise the majority
of the events in the 1982–2008 time period and the Guy–
Greenbrier swarms make up the majority of the events
during the 2009–2011 time period. These results suggest that
there is something fundamentally different about how the
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Figure 6. Comparing earthquake and injection well locations in Arkansas. (a) Arkansas 1982–2012 seismicity (circles and squares) and
injection well locations (triangles) from the Arkansas Oil and Gas Commission. Injection wells have been active since 2009: black triangles
were shut down in 2011, and white triangles are still operational. Seismicity is color coded by time and distance from an active well, with gray
circles occurring before injection began in 2009, filled squares occurring in the years of active injection (2009–2011) within 6 km of an active
well, white squares occurring in 2009–2011 farther than 6 km from an active well, and white circles occurring after the shutdown of injection
in 2011 (see legend in [b]). (b) Cumulative distribution of the distance between each earthquake and the nearest active well. For the earth-
quakes that occur during injection (squares), a distinct change in the distribution happens at an earthquake–well distance of 6 km. (c) Cu-
mulative distributions of interevent distances for each of the different populations of events shown. Earthquakes that occur close to an active
well are a much larger population than the others. (d) Cumulative fraction plot comparing the shapes of the distributions shown in (c).
Earthquakes that occur during injection within 6 km of an active well have a significantly different interevent distance distribution than
the other earthquakes. The color version of this figure is available only in the electronic edition.
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earthquake swarms in the 1980s–1990s were triggered and
how the earthquake swarms of 2010–2011 were triggered,
which is consistent with the hypothesis that the Guy–
Greenbrier swarms were induced.

One well-known physical mechanism for induced seis-
micity as well as natural fluid-driven swarms is pore pressure
diffusion. Increases in pore fluid pressure act to reduce fault
strength, bringing pre-existing fractures closer to failure ac-
cording to the Mohr–Coulomb failure criterion. The amount
of seismicity induced therefore depends on the ambient tec-
tonic stress, as well as local geological and hydraulic condi-
tions. The initiation of fluid injection in a region would lead
to substantial increases in pore fluid pressure, which build up
over time and diffuse outward from a well. Thus, induced
seismicity can continue even after injection has ceased, as
was the case at the Rocky Mountain Arsenal near Denver,
Colorado, where three mb ∼ 4:5 earthquakes occurred the
year after waste fluid injection ceased (Healy et al., 1968;
Hermann et al., 1981; Hsieh and Bredehoeft, 1981). In
Arkansas, the wastewater injection wells nearest to the
Guy–Greenbrier swarms were shut down by the end of July
2011, but increased seismicity rates could be expected to
continue while the pore pressure buildup from injection dis-
sipates (Horton, 2012b). Indeed, another small swarm oc-
curred in October 2011, although the seismicity rate since
then seems to have decreased, generally following the Omori
law. This is similar to what was observed at Basel, Switzer-
land, following the shut-down of an injection well used for
an Enhanced Geothermal System project (Bachmann et al.,
2011). Thus, an increase in background seismicity rate may
reflect events triggered by stress changes due to a pore pres-
sure front, as seen in natural fluid-driven swarms (e.g.,
Hainzl and Ogata, 2005).

We can begin to compare the migration of seismicity in
space and time from an injection well using simple models of
pore pressure diffusion that assume a point source pressure
perturbation occurs in an infinite homogeneous isotropic po-

roelastic saturated medium (Shapiro et al., 1997). Figure 7
shows the seismicity migration with respect to two UIC wells
in the study area, A (Permit 43266) and B (Permit 36380).
Both wells inject into the Ozark aquifer and were shut down
by 4 March 2011, shortly after the occurrence of an ML 4.7,
the largest event in the Guy–Greenbrier swarm (Horton,
2012b). Little is known about the hydrogeological conditions
in the study area, but the migration of the earthquakes closest
to these wells are consistent with hydraulic diffusivities
ranging from 0.01 to 0:1 m2=s. From previous studies of
reservoir-induced seismicity, diffusivities in the crust tend
to range from 0.5 to 50 m2=s (e.g., Talwani and Acree,
1985). At the Rocky Mountain Arsenal, where induced
earthquakes occurred in a similar depth range in fractured
Precambrian crystalline basement as the Guy–Greenbrier
events, the diffusivity was on the order of 1 m2=s (Hsieh
and Bredehoeft, 1981; Horton, 2012b). Lower diffusivities,
which indicate a time lag between injection and triggered
earthquakes, may be possible in situations where fluid is in-
jected into reservoirs that are bound by faults that act as bar-
riers to fluid flow, which may have been the case for the
November 2011 Oklahoma earthquake sequence (Keranen
et al., 2013).

The physical meaning of an increase in aftershock pro-
ductivity that may be associated with the commencement of
fluid injection in a region is more elusive and beyond the
scope of this paper. Changes in injection volume, rate, or
pressure may cause changes in pore pressure that are suffi-
cient to bring the entire system closer to a critical state of
global failure. Then the increase in productivity may reflect
earthquakes triggered by coseismic stress changes on faults
that were closer to failure than they had been prior to the start
of injection. Lei et al. (2008) suggest a similar mechanism
governing an earthquake sequence induced by water injec-
tion at the Rongchang gas field in China, where the events
are triggered by stress changes from both pore pressure dif-
fusion and seismic slip. Recent laboratory experiments have

Table 3
Arkansas Swarm Comparison

Data Set μ (Events/Day) K (Events/Day) c (Days) α p AIC

Enola, 1982–1987 0.007±0.025 0.030±0.034 0.002±0.018 0.71±0.19 0.95±0.03 470.77
μ estimated* 0.010±0.014 0.082 0.061 1.08 1.39 462.77

Guy–Greenbrier, 2010–2012 0.095±0.618 0.082±0.079 0.061±0.284 1.08±0.67 1.39±0.3 −133.98
μ estimated† 0.204±0.038 0.030 0.002 0.71 0.95 142.79
K estimated† 0.007 0.064±0.006 0.002 0.71 0.95 −18.06
μ and K estimated † 0.013±0.051 0.063±0.006 0.002 0.71 0.95 −16.52
μ, K, α estimated † 0.015±0.053 0.049±0.016 0.002 1.22±0.07 0.95 −24.03
μ, K, c estimated † 0.011±0.049 0.067±0.006 0.003±0.008 0.71 0.95 −21.996
μ, K, p estimated † 0.026±0.061 0.062±0.006 0.002 0.71 1.01±0.01 −33.81
μ, K, α, p estimated † 0.028±0.098 0.051±0.024 0.002 1.13±0.09 1.01±0.03 −38.50
μ, K, c, p estimated † 0.089±0.055 0.096±0.011 0.059±0.007 0.71 1.39±0.02 −130.67
μ, K, c, α estimated † 0.012±0.048 0.052±0.006 0.004±0.004 1.24±0.03 0.9457 −30.46

Uncertainties are 1 standard deviation.
*All other parameters held constant at 2010–2012 estimates to evaluate impact of parameter changes.
†All other parameters held constant at 1982–1987 estimates to evaluate impact of parameter changes.
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also shown that samples under excess pore pressure show
lower shear strengths than samples deformed at the same
stress conditions at normal pore pressure (Ougier-Simonin
and Zhu, 2013). Therefore an increase in aftershock produc-
tivity may be expected in regions that have had significant
pore pressure increases due to the start of fluid injection.

Conclusion

The results of this study may seem to suggest that ab-
solute values of ETAS parameters themselves may be a way
to distinguish between natural and man-made seismicity, par-
ticularly due to wastewater injection. For example, it has
been shown that natural swarms in a number of different
regions tend to have low values of α (e.g., Hainzl and Ogata,
2005; Lei et al., 2008). Perhaps induced seismicity in general
tends to have higher values of both μ and K. Testing this
hypothesis however is complicated by the fact that ETAS
parameters can vary widely from region to region, and μ and
K are particularly shown to be location dependent (Ogata,
2004). Our results demonstrate that within one region, it is
the time-dependent changes in these parameters that may be
more indicative of whether or not seismicity has been trig-
gered by a different process.

To summarize, the rate of small-to-moderate earth-
quakes in Oklahoma and Arkansas changed significantly
in 2009, and these changes do not seem to be due to random
fluctuations in natural seismicity rates. Our results suggest
that significant changes in both the background rate of inde-
pendent events and the triggering properties need to occur
in order to explain the increases in seismicity, in contrast
to what is typically observed when modeling natural earth-
quake swarms. Moreover, in Arkansas, earthquakes that oc-
cur near active wastewater injection wells tend to occur
closer together than the earthquakes that occur before, after,
or far from active injection. Therefore, a change in aftershock
productivity or a change in the interevent distance distribu-
tion may be a way to distinguish natural earthquake rate
changes from rate changes associated with wastewater injec-
tion. Improved seismic monitoring near injection wells will
be necessary to resolve whether changes in productivity or
changes in spatial distribution are the dominant factor in the
increased earthquake rates seen at these locations.

Data and Resources

Seismicity data were obtained from the Advanced Na-
tional Seismic System catalog at www.quake.geo.berkeley
.edu/anss/catalog‑search.html (last accessed November
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Figure 7. Pore pressure diffusion modeling for wells A and B, indicated in the map in Figure 6a. Black lines are theoretical pore pressure
diffusion curves for different values of hydraulic diffusivity D. Seismicity from 2009 to 2012 are plotted by distance and time from start of
injection at the given well. Gray squares are events that occur from 2009 to 2011 within 6 km of any active well, white squares occur from
2009 to 2011 farther than 6 km from any active well, white circles occur after injection stops in 2011. Stars indicate the events that occur
during the years of injection (2009–2011) that are closest to either well A (left) or well B (right). Filled stars occur within 6 km of the well and
white stars occur farther than 6 km from the well. Assuming these starred events are most likely to be triggered by the given well, their
distributions are fit by relatively low diffusivities. The color version of this figure is available only in the electronic edition.

2860 A. L. Llenos and A. J. Michael

http://www.quake.geo.berkeley.edu/anss/catalog-search.html
http://www.quake.geo.berkeley.edu/anss/catalog-search.html
http://www.quake.geo.berkeley.edu/anss/catalog-search.html
http://www.quake.geo.berkeley.edu/anss/catalog-search.html
http://www.quake.geo.berkeley.edu/anss/catalog-search.html
http://www.quake.geo.berkeley.edu/anss/catalog-search.html


2012) and the U.S. Geological Survey-National Earthquake
Information Center Preliminary Determination of Epicenters
catalog at earthquake.usgs.gov/earthquakes/eqarchives/epic/
(last accessed November 2011). Arkansas injection well data
were obtained from the Arkansas Oil and Gas Commission at
www.aogc.state.ar.us/JDesignerPro/JDPArkansas/default.
htm (last accessed November 2012).
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