
INDUCED SEISMICITY

Oklahoma's induced seismicity
strongly linked to wastewater
injection depth
Thea Hincks,1,2 Willy Aspinall,1,2,3 Roger Cooke,4,5 Thomas Gernon6*

The sharp rise in Oklahoma seismicity since 2009 is due to wastewater injection.The role of
injection depth is an open, complex issue, yet critical for hazard assessment and regulation.We
developed an advanced Bayesian network to model joint conditional dependencies between
spatial, operational, and seismicity parameters.We found that injection depth relative to
crystalline basement most strongly correlates with seismic moment release.The joint effects
of depth and volume are critical, as injection rate becomesmore influential near the basement
interface. Restricting injection depths to 200 to 500 meters above basement could reduce
annual seismicmoment release by a factor of 1.4 to 2.8.Our approach enables identification of
subregions where targeted regulation may mitigate effects of induced earthquakes, aiding
operators and regulators in wastewater disposal regions.

O
klahoma’s ∼900-fold increase in the an-
nual rate of seismicity since 2009 (1) (fig. S1)
makes it themost seismically active region
in the contiguousUnitedStates.Wastewater
disposal via deep injection wells explains

the surge in earthquake activity (1–7). In many
cases, pressurized fluids migrate from target
formations downward into the crystalline base-
ment (1, 7–10), where most earthquakes occur
(11–18). The disposed fluids may locally increase
pore fluid pressure and reduce the effective
stress along faults (2, 9, 11), resulting in induced
seismicity (2, 19). In September 2016, a magni-
tude (Mw) 5.8 earthquake centered near Pawnee
caused injury and damage to buildings, prompt-
ing the immediate suspension of 37 disposal
wells (20). The number of damaging earthquakes
(5, 6, 21) resulted in litigation against well oper-
ators (22), increased risk to critical infrastructure
(23), and considerable financial loss in the re-
insurance industry (24).
The escalating seismicity compelledOklahoma

regulators to introduce emergency directives
aimed at managing injection (25), informed by
an empirical understanding of how seismicity
responds to changes in injection rates or vol-
umes (2, 4, 6). These measures appear to have
decreased the earthquake count (Mw ≥ 3) in the
period 2015 (21) to the present (fig. S1). Con-
sidering the purported strong association be-
tween seismicity and oil production inOklahoma
(26), a major driver of this trend could have been
abated injection due to relatively low oil prices.
However, a case has been made (27) that the
probabilities of occurrence of larger-magnitude

earthquakes are not decreasing as rapidly as other
models suggest (1). The total seismic moment
release has declined only modestly despite de-
creased injection volumes (fig. S1). The ultimate
impact of reduced injectionmay take years to ma-
terialize given observed lagging in the response
of seismicity levels to injection (11, 27, 28).
TheOklahomaCorporation Commission (OCC)

requires operators to prove that their injection
does not encounter basement lithologies (29),
but debate remains on the precise influence of
injection depth. Although a study encompass-
ing the wider Central and Eastern United States
(CEUS) found no significant correlation between
proximity to basement and earthquake occur-
rence (4), other studies suggest that injections
near, or within, crystalline basement might in-
crease the likelihoodof seismicity locally (12,30,31).
Therefore, we need to analyze the joint effects
of spatial, operational, geologic, and seismicity
parameters (4, 19, 21).
We developed a Bayesian network (BN) to

quantitatively evaluate correlations between
well operational parameters, geologic setting,
and seismicity, focusing on the “Oklahoma in-
duced seismicity zone” (5) (Fig. 1). Our BN frame-
work capitalizes onmathematical advances (32)
and innovative software, UNINET (33), imple-
mented in R (34). UNINET models joint de-
pendency using continuous data distributions,
bypassing the limiting assumptions of discrete
approximations (32). Monthly underground in-
jection control (UIC) well data for January 2011
to September 2016were obtained fromOCC (35),
including injected volume, pressure, duration of
well activity, and total well depth. Earthquake
location andmagnitude data, from the Advanced
National Seismic Systems’ (ANSS) earthquake
catalog, ComCat (36), were used to calculate total
seismic moment release. We considered earth-
quakes of Mw ≥ 2, with a hypocentral depth
<10 km (fig. S3), and a hypocenter fallingwithin
20 km of an injection well (32). We chose this

distance on the basis of the documented occur-
rence of associated earthquake swarms within
10 km (37) to 20 km (3) of high-rate disposal
wells, supported by additional calculations that
indicate strong correlations between injection
andmoment up to∼20 km (32). Basement depths
at well sites were estimated by spline interpo-
lation (32, 38) using 1232 depth records from
Oklahoma Geological Survey (39) (fig. S5).
Over the study period, >10,000 active class II

UIC wells in Oklahoma (Fig. 1, A and B) col-
lectively injected on average ∼2.3 billion barrels
(bbl) of fluid per year via saltwater disposal (SWD)
and enhanced oil recovery (EOR) (35) (figs. S1 and
S2 and table S1). We considered class II injections
into the full range of target geologic formations,
to capture all potential contributions to induced
seismicity (32). Wastewater disposal is particu-
larly intensive within the Cambrian–Ordovician
Arbuckle Group, a sedimentologically and struc-
turally heterogeneous sequence of dolomitized
carbonates and breccias (40) ∼0.15 to 2 km thick
throughoutmost of the study area. Sedimentary
cover is hydraulically connected to Precambrian
crystalline basement (1, 7–9) (fig. S6) via an ex-
tensive fault network (14, 17, 41, 42) (Fig. 1C).
High-rate injection has been linked to in-

creased seismicity (4). However, analysis using
BN and regression models indicate that other
parameters have an important, but largely un-
quantified, impact on seismic hazard. We ex-
plored correlations between key operational and
spatial characteristics and seismicity, comparing
a number of network configurations with a sim-
ple linear regression (Fig. 2) to determine the
most appropriate model (32). We defined nodes
for key observables, including well operating
parameters (depth, monthly, annual and cumu-
lative injected volume), geologic parameters (dis-
tance to basement), and total seismic moment
release within 20 km of the well in the year
ahead (Fig. 2, A and B) (32)—a standard time
scale for operational and seismic hazard fore-
casts (5, 6, 21). To improve forecasting for deeper
and higher-volume wells associated with higher
seismicity (Fig. 3 and fig. S7) (32), our models
focused onwells ≥1 km deep and cases ofmonth-
ly injection >10,000 bbl, i.e., those of greater
concern to regulators (20). We used UNINET in
“data mining”mode to estimate the set of joint
normal copulae (multivariate probability dis-
tributions) that most closely represented the
input data (32). We used the resulting models to
estimate moment release for any given set of
operating conditions.
The saturated BN (Fig. 2A) (32) gave the most

complete representation of the observed data
under stationary conditions, outperforming the
regressionmodel (in-sample testing, table S3 and
figs. S9 and S10). However, the unsaturated BN
(Fig. 2B) provided better forecasting under the
changing injection regime of 2015 to 2016 (fig. S1B).
This is because rank correlations between volume
variables in the saturated BN preserved relation-
ships (associated with increasing injection) that
were no longer valid under post–2015 operating
conditions.
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We used two test data sets for model verifica-
tion (fig. S11 and table S3). The first demonstrated
operational use of the BN to forecast future mo-
ment release, learning with observations from
January 2011 to June 2015, and forecasting from
July to December 2015. The second test used 90%
of the full data set for learning (January 2011
to December 2015, randomly sampled) and the
remaining 10% for verification (fig. S11) (32). We
compared forecast results using the BN and re-
gression models (Fig. 2, figs. S12 and S13, and
table S6) and found that in both cases, the BN
gave the best performance.
The spatial distribution of earthquakes (Fig. 1,

B and C, and fig. S2) implies important under-
lying geologic characteristics influencing seis-
micity. The BN cannot explicitly represent these
characteristics because of the variability and pau-
city of geologic data at relevant depths and re-
solution across the region. To address this issue,
we applied themodels iteratively to identifywhere
(spatially) they systematically under or overfore-
cast, because of latent features outside the scope
of the model. We used both BN and regression
models to estimate seismic moment for a subset
of the training data and used the forecast error to
compute a “geospatial correction” map—a proxy
for unobserved geologic data (32) (fig. S8). We
repeated the learning step with the training data
using the geospatial correction as an additional
input node.We used this revised network (Fig. 2)
for final forecast verification (figs. S10, S12, and
S13) (32).
The geospatial correction shows the strongest

(negative) correlation (–0.55) with annual mo-
ment release (Fig. 2C), supporting the obser-
vation that lithologic (9) and fault network
characteristics (14, 16–18) collectively play a
critical role in determining susceptibility to in-
duced seismicity. Root mean squared errors,
mean absolute errors, and median average de-
viation for the BN and regression models, both
with andwithout the geospatial correction node,
show the improvement in forecast skill resulting
from this additional step (table S6, Test 2). This
degree of improvement suggests that the geo-
spatial correction effectively characterizes the
impact of important, but unobservable (latent),
factors. It could additionally prove valuable in
mapping spatial variation in induced earthquake
hazard (21).
Our analysis with UNINET shows that dis-

tance to the basement interface ismore strongly
correlated (–0.34) with annual seismic moment
release than injected volume; and cumulative
injected volume has a stronger correlation (+0.26)
with annual seismicmoment release than annual
(+0.20) or monthly (+0.18) volume (Fig. 2C, em-
pirical rank correlations). However, we expect
these volume correlations to change with time
owing to the effects of regulation, market-driven
changes in oil production and associated dis-
posal, and time lags between injection and in-
duced seismicity. For example, cumulative volume
will become less well correlated with annual
moment if the current trend of reduced seismicity
continues (fig. S1A).

UNINET uses joint normal copulae (32,33).
As several input distributions are highly skewed
and seismic moment is censored (because of cat-
alog incompleteness for Mw < 2.5; fig. S4), the
normal copula cannot perfectly represent the data.
We see this in the difference between the empirical

and BN unconditional rank correlations (table S5)
and cumulative distribution functions (CDFs;
Fig. 2 and figs. S12 and S13). However, calcula-
tions suggest that using optimal copulae would
yield only a small improvement, negated by
greatly increased computational complexity (32).
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Fig. 1. Wastewater injection and seismicity in Oklahoma. (A). Map showing the surface
expression of key geologic provinces of Oklahoma (41) and class II UIC wells (35) (related to oil
and gas production). Black polygon defines the “Oklahoma induced seismicity zone” delineated by
the USGS (5). (B) Map showing total injected volume (bbl) for 2011 to 2015 (30-km Gaussian
kernel density). Symbols denote locations of earthquakes from 2011 to 2016, including the 5
November 2011 Prague (7, 10, 11) and 3 September 2016 Pawnee (18, 21, 28, 44) events. (C) Map
showing total seismic moment release from 2011 to 2016 (20-km Gaussian kernel density),
with mapped faults in the sedimentary cover including the Nemaha uplift (arrow) also shown
(42) [this does not include all large-scale basement structures (17)]. Yearly injection volumes and
seismic moment release are shown in fig. S2.
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The asymmetry of the data also means that a
linear model will not perform as well as the BN
(e.g., Fig. 2, D and E).
We demonstrate how the BN could be used to

quantify the expected impact of UIC regulations
with three applied examples. We can (i) reduce
injection depth by a fixed amount [to simulate
well plug back (29) or optimal depth of a new
well], (ii) cap injection volume according to im-
posed regulatory limits (25, 43), and (iii) restrict
injection depth in the Oklahoma induced seis-

micity zone, by enforcing a minimum permissi-
ble distance above the basement interface. We
intend these examples as demonstrations of how
the BN could be used in practice. Before using
this approach to inform operational or regula-
tory practices, further detailed simulationswould
be required to account for local-scale suscep-
tibility to induced seismicity.
For a subset (10%) of well records (fig. S11), we

reduced well depth by 1000 m, and the resulting
“test data” were used to produce a set of revised

forecasts for annual moment release. We cal-
culated the change in mean moment for each in-
dividual case due to the change in depth (Fig. 4).
For above-basement wells, raising the well by
1000 m shifted injection further from the base-
ment (shallower) and led to a reduction in seismic
moment release. We found the greatest reduc-
tion in wells that inject higher volumes (Fig. 4A).
Conversely, increasing depth to inject closer to
(or into) the basement led to an increase in
seismic moment release (fig. S14).
To model the potential impact of regulating

volume, we applied a daily limit of 15,000 bbl per
well, as imposed by Oklahoma regulators (25),
similar to the Kansas 16,000 bbl/day limit for
areas of “seismic concern” (43). We applied this
limit to the full data set and used the revised
monthly injections to recalculate annual and
cumulative volumes for each well (32). We then
used the BN to simulate the revised annual mo-
ment release for all individual monthly well re-
cords with reduced injection (Fig. 4B).
As expected, our simulations showed thatwells

subjected to the largest drop in monthly and
annual injected volume yielded the greatest re-
duction in moment release (Fig. 4B). We found
a small number of exceptions in which large
changes inmean annualmomentwere predicted
for wells with relatively low annual injection
rates (Fig. 4B). These cases largely corresponded
to wells injecting close to the basement (fig. S15),
wheremoremodest changes in injection volume
can yield proportionally larger decreases in mo-
ment (Fig. 4). This demonstrates the importance
of quantifying the joint effect of operational pa-
rameters (depth, cumulative volume and injec-
tion rates) on future seismicity levels.
We performed a final set of simulations to

quantify the statewide impact of depth restric-
tion, using depth limits of (i) 200mand (ii) 500m
above basement, wherever this could be practi-
cally applied.Usingwell records forDecember 2015
to predict annual moment release in the year
ahead, we found an indicative (mean) reduction
in total annualmoment release for theOklahoma
induced seismicity zone of a factor of ∼1.4 for the
200-m limit and a factor of ∼2.8 for the 500-m
limit (32).
A distinct advantage of the BN is the ability

to update the model and produce revised fore-
casts as data become available. For example,
using newly released (September 2017) OCC
injection data (35), we tested BN forecasting
for 2016, first using the model as developed
above (fig. S16) and second, using an updated
geospatial correction and moving window for
learning, which (by partially accounting for
temporal changes in the system) improves per-
formance (figs. S17 and S18) (32). The empirical
and unconditional BN rank correlations (table
S7) computed with the complete updated data
set are not considerably different from those for
2011 to 2015 (table S5), lending credence to the
basic model.
Our results indicate that seismic moment re-

lease in Oklahoma is strongly correlated with in-
jection proximity to crystalline basement (Figs. 3
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Fig. 2. BN structure, unconditional rank correlation coefficients, and cumulative distribution
functions (CDFs) for Test 2. (A) The saturated network and (B) the unsaturated network. Arcs denote
influence between nodes. (C) Unconditional rank correlation coefficients for all nodes with log10 annual
moment release (empirical data and BNs).This correlation is a measure of the strength of influence of
each observable on the node of interest (moment release).The BN uses joint normal copulae to represent
the empirical data—the closer the values in the BN rank correlation matrix are to the empirical rank
correlation matrix, the better the model approximates the data (matrix determinants can also be
compared). Full correlation matrices are provided in table S5. (D and E) CDFs of log10 annual moment
release for the BN forecast (mean and median estimate), linear regression model, and empirical data
for (D) saturated BN and (E) unsaturated BN.This function shows how closely the model output
distribution matches the observations. Results are shown for Test 2–learning using 90% of the
observations, testing with the remaining 10% (see fig. S11).
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and 4A and fig. S7), corroborating previous
hypotheses (30, 31) but contrary to observations
encompassing the CEUS (4). We attribute this
disparity to scale dependence (19). In Oklahoma,
the permeability structure of the Arbuckle Group
permits downward fluid migration into crystal-
line basement (1, 9), causing reactivation of op-

timally oriented strike-slip faults (14, 16–18). On a
continental scale, lithologic and structural heter-
ogeneity and concomitant stress-field variations
could obscure any association between depth
and seismicity, as some lithologies are more sus-
ceptible to earthquakes (9) (fig. S6); e.g., where
fracture flow causes localized pore fluid pres-
sure increases, allowing rupture along critically
stressed faults (9). Regions of relatively high-
permeability basement in other parts of the CEUS
will conceivably permit greater pore fluid diffu-
sion and pressure release, inhibiting earthquakes
(9). Induced seismicity is also controlled by local

hydrogeologic conditions (30) and the location,
scale, and orientation of critically stressed faults—
all unique aspects of the geotectonic setting.
This highlights the importance of local-scale
assessments.
Our Oklahoma assessment exploited a 6-year

record of fluid injection to develop a compre-
hensive understanding of the controls on in-
duced seismicity. The two-stage BN quantifies
the joint effects of operational parameters and
latent spatial features on seismic moment re-
lease, facilitates regular model updating, and of-
fers improved forecast performance compared to
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Fig. 3. Probability distributions for well
depth and distance to basement using BN
inputs for January 2011 to December 2015
(wells ≥1 km deep and injection records
>10,000 bbl/month). Probability density for
(A) well depth below surface; (B) depth relative
to basement and (C) distance to basement; iden-
tifying (i) cases with low or no seismic activity
(log10 moment in 1 year ≤13; shaded blue) and
(ii) cases with relatively high seismic activity (log10
moment in 1 year ≥15; shaded pink).The distribu-
tions in (B) and (C) show that wells drilled closer
to the basement are associated with higher
seismicmoment release. Distributions for injection
volume are shown in fig. S7.

Fig. 4. Simulated impact of raising the injection well level or capping monthly injection volume.
(A) For a subset of records, well depth was reduced by 1 km and used to generate revised estimates
for annual moment release using the BN (colored points) and linear regression models (black points).
The plot shows change in annual moment versus original well depth and predicts the greatest
reduction in moment release for wells initially closest to the basement interface.The joint effect of
cumulative volume is also seen—wells with higher cumulative injections are expected to experience
proportionally greater moment reduction. (B) Predicted change in mean annual moment resulting
from a regulatory limit of 15,000 bbl/day (450,000 bbl/month) versus monthly injection with no cap.
This plot shows cases of high injection only (where the limit is applied). Points are colored by total
reduction in annual volume to illustrate the importance of maintaining injection limits over time. Inset:
CDFs for moment release (BN mean estimates) show the overall effect on all high-volume wells.
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traditional linear models. This approach has im-
portant implications for statewide assessments
and regulatory decision-making under geologic
uncertainty [note that the Pawnee (16, 18, 44),
Cushing (44), Prague (11, 14), and Fairview (45)
earthquakes occurred onpreviously unrecognized
faults or splays]. Our framework allows regulatory
actions to be evaluated on a rational, quantitative
basis in terms of seismic effects. Themodel could
be used to identify evolving vulnerability, comple-
menting zoned seismic hazard forecasts of the
U.S. Geological Survey (USGS) (21), and provide
a basis for targeted management of induced
seismicity in Oklahoma and other wastewater
disposal regions. We welcome the support of
researchers, operators, regulators, and policy-
makers in updating and extending our model.
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may provide a way to improve forecasts of the impact of proposed regulatory changes on induced seismicity.
was the most important parameter when considering the potential for release of seismic energy. This modeling strategy
to determine the interplay between these parameters in Oklahoma. The injection depth above the crystalline basement 

 developed an advanced Bayesian networket al.geologic parameters in triggering such earthquakes is unclear. Hincks 
Wastewater injection has induced earthquakes in Oklahoma, but the relative importance of operational and

Injection depth matters for induced earthquakes
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